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SUMMARY

A design is said to have nested blocks if the set of experimental units (plots) is
partitioned into blocks and each block is further partitioned into subblocks. A review
is given of estimators and their variances when information is combined from the plots
stratum and the subblocks stratum. The relative size of these two stratum variances
is usually unknown but a plausible range may be suggested by previous experiments.
A method of comparing designs is proposed and is illustrated for several examples.
It is shown that a design may be optimal for the intrablock analysis when subblocks
are ignored, and also optimal for the intra-subblock analysis when blocks are igno-
red, without being optimal for the combination of information. Nevertheless, some
theorems are proved showing that certain designs are optimal over certain classes of
design when information is combined and the subblocks stratum variance is at least
as big as the plots stratum variance. Heuristic strategies are proposed for finding
good designs in other situations.

KEY WORDS: combining information, nested balanced block design, nested blocks,
nested regular graph design, optimal design.

1. Introduction

Let Q be a set of N plots, or experimental units. Suppose that € is partitioned into
b blocks of ck plots each, and that each block is partitioned into ¢ subblocks of k plots
each: thus N = bck. Then subblocks are said to be nested in blocks; alternatively, we
say that the partition of 2 into subblocks is finer than the partition of  into blocks.

The structure of nested blocks is a particular one of the infinite class of structures
called simple orthogonal block structures, introduced by Nelder (1965a). His 1965
notation for this structure was b — ¢ — k, but this has been replaced by b/c/k
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in many statistical computing packages, for example Genstat (Payne et al., 1993).
Simple orthogonal block structures have been described in detail by Speed and Bailey
(1982, 1987) and Bailey (1996).

Designs for nested blocks have been given by Preece (1967), Robinson (1970),
Homel and Robinson (1972, 1975), Jimbo and Kuriki (1983), Dey, Das and Banerjee
(1986), Banerjee and Kageyama (1990, 1993), Gupta (1993), and Mejza and Kagey-
ama (1995, 1998). (Note that the phrase ‘nested design’ has a different meaning in
the work of Federer, 1972 and Longyear, 1981: see Bailey, 1985.) However, there is
no general advice on choosing among such designs.

In Sections 2-5 I review the theory of nested block designs as a special case of
the theory of designs for simple orthogonal block structures. This review includes
covariance structure, randomization, estimation, general balance, and combination of
information. Califiski (1994, 1997) has also given the theory of nested block designs,
especially randomization and combination of information, although from a slightly
different perspective. Morgan (1996) also reviews the covariance structure and the
multi-stratum analysis, and gives many methods of constructing designs.

In the remainder of the paper I discuss the problem of choosing a good design
for the nested block structure, assuming that information will be combined from two
strata, the ratio of whose stratum variances may be known approximately. Mukhopa-
dhyay (1981), Bhattacharya and Shah (1984) and Bogacka and Mejza (1994) made a
similar comparison of designs. They used the structure b/k and combined information
from the two strata, assuming that the ratio of stratum variances is known. Designs
for the structure (b# b)/k have been compared by Bailey (1993) and Leeming (1998),
under the assumption that only the bottom two strata are used for estimation. A
harder problem, involving three unknown stratum variances, was solved in a few cases
by Morgan and Uddin (1993) and Leeming (1997, 1998, 1999): there the structure is
b/(s * k) and information from the three bottom strata is combined.

2. Nested blocks

We define four relation matrices on . These are symmetric matrices Ry, Rp, Rs
and Rp in R®*? with every entry equal to 0 or 1. We put Ry equal to the all-1
matrix Jo and Rp equal to the identity matrix Io. For elements o and 5 of Q, the
(o, B)-entry of Rp is equal to 1 if @ and @ are in the same block, and to 0 otherwise.
Similarly, the («, 3)-entry of Rg is equal to 1 if o and § are in the same subblock,
and to 0 otherwise.

We also define four subspaces Vy, Vg, Vs and Vp of the real vector space RS,
The subspace Vj is the one-dimensional space consisting of the constant vectors, that
is, those vectors taking the same value everywhere. The subspace Vp consists of those
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vectors which take the same value throughout each block; and Vg consists of those
vectors which take the same value throughout each subblock. The whole space is
labelled Vp. Thus we have

Vo< V< Vg<Vp

and the dimensions are 1, b, bc and N respectively. The matrices of orthogonal
projection onto these four spaces are N~! Ry, (ck)"'Rp, k~1Rs and Rp respectively.
Define four further subspaces Wy, Wg, Ws and Wp as follows:

Wo = VW
W = VenVg;
Ws = VsnVg;
Wp = Vi

These subspaces are called the mean stratum, the blocks stratum, the subblocks stratum
and the plots stratum respectively. Their dimensions are equal to 1, b — 1, b(c—1)

and bc(k —1). The matrices of orthogonal projection onto the four strata are Qo, @B,
Qs and Qp, where

Q = N7'Ry, = N7ljy

QB (ck)™'Rp — N™'Ry;

Qs = k™ 'Rg-— (ck)"lRB;

Qp = Rp—k 'Ry = Iq-— k'Rg.

Given a design on this set of plots, the appropriate randomization is as follows:

(i) randomize blocks (that is, block labels);
(ii) within each block separately and independently, randomize subblocks;
(iif) within each subblock separately and independently, randomize plots.

Let Y be the random vector of responses on the plots when an experiment is -
performed. The above randomization procedure allows us to assume that

Cov(Y) =€pQp +£5Qs + QB + £4Qo, (1)

where {p, {g, {5 and &; are all non-negative (Nelder, 1965a; Bailey, 1981, 1991;
Calinski, 1994, 1997; Calinski and Kageyama, 1991, 1996). If this randomization is
the only source of variability then £, = 0 (Bardin and Azas, 1990). The quantities
€p, &g, € and ) are called the stratum variances.

An alternative justification for Equation (1) is via components of variance: see
Cornfield and Tukey (1956), Speed and Bailey (1987), Speed (1987) or Morgan (1996).
It is assumed that there are independent random variables for each plot, each sub-
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block, each block (and possibly one for the whole experiment). If the variances
are 02, 0%, 0% and o3 respectively then this leads to Equation (1) with ¢p = o2
b =ko% + 02, £ = ckol + ko% + 02 and £y = Nod + cko% + ka% + 02, Thus

€p <& <€p <o (2)

If subblocks and blocks have been chosen to encapsulate the natural heterogeneity
of the experimental material then Equation (2) should hold. However, one or more
of the inequalities may be reversed: see Nelder (1954). If subblocks are chosen to be
representative rather than internally homogeneous, or if plots within a subblock have
to compete for limited resources, then we may have {g < {p. In this paper I do not
always assume that (2) is true.

]

3. Designs for nested blocks

Let O be a set of n treatments. Suppose that we wish to apply these treatments to
the plots in 2 and perform an experiment to compare the treatments. Once © and
Q have been specified, a design A is just a function from Q to ©: plot w receives
treatment 6 if and only if A{w) = 0. We can also represent A by the Q x © design
matriz X, defined by
0 otherwise.
Our second assumption about Y is that

E(Y) =X, | (3)

where T is a vector of treatment effects in R®. A vector  in R® is called a treatment
contrast if its entries sum to zero. We want to estimate the linear combinations z'r
for contrasts x.

Some classes of design for nested blocks have been extensively studied. In split-
plot designs for two treatment factors our blocks and subblocks are usually called
blocks and whole plots respectively. One main effect is estimated in the subblocks
stratum; the interaction and the other main effect are estimated in the plots stratum.
These designs are equi-replicate with replication b.

Other factorial designs for ck treatments in nested blocks are constructed by
putting each treatment once in each block and confounding different (parts of) inter-
actions or main effects with subblocks in each block.

When the treatments are unstructured and n = ck our blocks and subblocks
are often called replicates and blocks respectively. The design is resolvable if each
treatment occurs once per block. It seems to me to be begging the question to call
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a subset of § a replicate, because our blocks exist before the design A is chosen.
Following a suggestion of Donald Preece, I also prefer to say that a design is resolved
if it is a design for the structure b/c/k in which each treatment occurs once per block,
leaving the term resolvable for a block design for the structure (bc)/k in which the
subblocks can be grouped into sets containing each treatment once.

4. Estimation in one stratum

Nelder (1965b) showed how to use Equations (1) and (3) to derive the best linear
unbiased estimators in each stratum. Projecting onto the plots stratum gives

E(QpY)=QpXT and Cov(QpY)=¢(pQp.

Put Lp = X'QpX. If there is a vector z in R® such that Lpz = z then the best linear
unbiased estimator of 2’7 in this stratum is 2/ X’QpY’, whose variance is 2’ Lpz¢ p- If
there is no such z then 2’7 is not estimable in this stratum. If = € Im(Lp) then we
may take z = Lz, so the variance is 2/ Lpz¢p.

Compare this with the situation when Cov(Y) = Iqo2. Then the best linear
unbiased estimator of z'7, using all the data, has variance 2/(X’X)~'zo2. The ratio
of these variances is

(X'X) 1z o?
'Lz g’
so the quantity «’(X'X)'z/a'Lyz is called the efficiency factor for z in the plots
stratum. The efficiency factor depends on the design and the contrast but not on the
variability of the experimental units.

For 0 in ©, let 79 be the replication of 8. Let T be the © x© diagonal matrix whose
(6, 0)-entry is /7y, so that T2 = X’X. Suppose that T~z is an eigenvector of the
symmetric matrix T-!LpT~! with eigenvalue e. Then e is the efficiency factor for z
in the plots stratum. Pearce, Califiski and Marshall (1974) called such contrasts z
the basic contrasts of the design.

James and Wilkinson (1971) defined the canonical efficiency factors of the design
to be the eigenvalues of XT~2X'QpXT~2X’ on vectors of the form Xy for treatment
vectors y other than multiples of the all-1 vector. But XT-2X'QpXT2X'Xy = eXy
if and only if Lpy = eT?y. In this case put & = T2y: then x is a basic contrast.

Although he did not use the same words, Nelder (1965b) defined efficiency factors
and basic contrasts for all strata of a multi-stratum design. So I shall refer to the
n — 1 eigenvalues of T"'LpT~! (excluding the eigenvector with entries \/To) as the
canonical efficiency factors in the plots stratum, and the corresponding contrasts x
as the basic contrasts in the plots stratum.
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Similarly, put Lg = X'QsX and Lp = X'QpX. If 2 € Im(Lg) then z’'7 can be
estimated in the subblocks stratum. The variance of the best linear unbiased estimator
is #’Lgz€g and the efficiency factor for z in this stratum is 2/(X'X)~1z/z'Lgz.
Basic contrasts and canonical efficiency factors for the subblocks stratum are defined
analogously to those for the plots stratum.

In principle, we can also obtain estimators in the blocks stratum, with variances
x'Lgxzég. In this paper I shall assume that £z is so large that there is no value
in using such estimators. This assumption includes the limiting case that {5 = oo,
which corresponds to fixed block effects and may be a reasonable assumption if blocks
are used for management operations such as harvesting: for example, see Williams
and Matheson (1994, Section 8.3).

Mejza and Kageyama (1995) considered only designs for which Lg = 0, that
is, there is no information on treatment contrasts in the blocks stratum. I do not
restrict designs in this way. If n does not divide ck there can be no equi-replicate
design with Lp = 0. Even when such designs exist they may not be optimal for
combining information, as Example 2 shows.

There is no information on treatment contrasts in the mean stratum, so the term
£0Qo may be ignored.

Both split-plot and confounded designs are orthogonal in the sense that LpT—2Lg
= LpT 2Lg = LsT~2Lp = 0. However, Lg # 0, so some contrasts are estimable
only in the subblocks stratum. It follows that the design in subblocks is not connected.
For the rest of this paper I consider only designs that are connected in subblocks: thus

Lp has rank n—1. Such designs are also connected in blocks, as Mejza and Kageyama
(1998) showed.

5. Combining information

In many practical situations the stratum variances {p and g have the same order of
magnitude, so there is worthwhile information on 7 available from both the plots and
subblocks strata. Yates (1939, 1940) recommended that this information be combined.
Among many later papers about combining information, the most relevant to my
context here are Nelder (1968), Patterson and Thompson (1971), Corsten (1985),
Calinski (1996, 1997) and Calinski and Kageyama (1996).

Let ¢ = £g/&p. If ¢ is known then we can project the data onto Wp + Ws and
use generalized least squares to obtain the best linear unbiased estimator of z'7; it is

LpsX'(Qp + v 'Qs)Y (4)
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and has variance

&' Lpgztp, (5)
where Lps = Lp + 9~ *Lg. Our connectivity assumption implies that ker(Lpg)
consists of only the constant vectors in R®, so that 2'7 is estimable in Wp + Wy for
all treatment contrasts x.

An alternative method is available when the basic contrasts of the two strata
are the same. This condition is called general balance: it was introduced by Nel-
der (1965b) and has been discussed by Houtman and Speed (1983), Speed (1983),
Bailey and Rowley (1990), Mejza (1992), Payne and Tobias (1992), Califiski (1993)
and Bailey (1994). A design for nested blocks is generally balanced if and only if
LpT—2Lg = LgT~2Lp; that is, if and only if the matrices T=1LpT~! and T~ LgT~!
have common eigenvectors.

Suppose that z is a basic contrast in both strata, with efficiency factors ep and
es respectively. If ep and eg are both non-zero then /T can be estimated in both
strata: let the estimators be Zp and Zgs respectively. These have variances in the

ratio {p/ep :: £g/es, so the unbiased linear combination of Zp and Zs with the
minimum variance is
YepZp +esZs
den e (6)
ptes
whose variance is
Pepz' (X' X)1
Yep +es
As Houtman and Speed (1983) showed, the two methods give identical estimators
of /T when z is a basic contrast of a generally balanced design.

However, 1/ is not usually known a priori. In the method of restricted maximum
likelihood (REML), introduced by Patterson and Thompson (1971), {p and ég are
estimated from (I — XT~2X’)Y under the assumption that ¥ is multivariate normal.
This gives an estimate of v, which is substituted for v in the generalized least squares
estimator (4).

In the second method % also has to be estimated from the data. A popular initial
estimate is the ratio of the residual mean squares in the subblocks and plots strata.
The method can then be iterated. Each estimate # of T gives a new estimate ¢ of ¥
from Y — X#. Each 9 is then substituted into (6). The iterated procedure appears to
converge (Nelder, 1968; Calinski and Kageyama, 1996), in which case it gives the same
estimates as REML (Houtman and Speed, 1983; Patterson and Thompson, 1975).

If the design is generally balanced then T-1LpgT~! has the same eigenvectors as
T'LpT~! and T~'LsT" irrespective of the value of 1. The numerical simplicity
of the second method is related to the fact that we do not need to keep calculating
explicit generalized inverses of Lpg for different values of 1.
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If the design is equi-replicate, the canonical efficiency factors can be found from
the concurrence matrices. For treatments 6 and 7, the concurrence Ag(8,7) of 6 and
7 in blocks is equal to the number of ordered pairs of plots (e, 8) such that o and
B are in the same block, A(a) = 6 and A(B) = 7. If the design is binary in blocks
then Ag(0,0) = ry. The concurrence matrix Ag for blocks has entries Ag(6,7). The
concurrence matrix Ag for subblocks is defined similarly.

Now, Ap = X'RgX and Ag = X'RsX, so Lp = X'X — k™ 1Ag and Lg =
k='Ag—(ck)~1Ap. If the design is equi-replicate with replication r then T is a scalar
matrix and 72 = X’X = rlg. Thus the design is generally balanced if and only if
ApAgs = AgAp. Moreover, z is a basic contrast with efficiency factors ep and eg
if and only if Lpxr = repr and Lsx = regx: this happens if and only if z is an
eigenvector of both Ag and Ap with eigenvalues rkfs and rckfg respectively, where

€p = 1- f S
es = fs—[s
It is convenient to summarize the canonical efficiency factors of a generally balanced

equi-replicate nested block design in a table. For each common eigenspace of Ag and
Ap there is a column containing dimension, fg, es and ep.

Ezample 1. The equi-replicate design A in Figure 1 has nine treatments in three
blocks of twelve plots. Each block is partitioned into three subblocks of four plots.

(113]7]9]/2]4[8[1]6]8]3[5]
A=[3]5]9]2][7[9[4[6[8]1]5]7]
[4]6[1]3f|5]7[2[4]9]2[6]8]

Figure 1. An equi-replicate design for nested blocks which is not generally balanced

The concurrence matrices for design A are

(41 221122 1] (6 56 55556 5]
141221122 56 56565655
214122112 6 565550565
221412211 5656565055
As=112214122 1] andAg=|5555615E6156
112214122 5656560555
211221412 555565656
221122141 6 56555565
(12211221 4] | 555565656

These do not commute with each other so the design A is not generally balanced.
This shows that the concept of general balance is not vacuous. O
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Resolved designs are generally balanced because they have Ap = rJg. Bailey and
Speed (1986) show Nelder’s method in detail for a particular class of resolved designs
called rectangular lattices, which were introduced by Harshbarger (1947, 1949).

Homel and Robinson (1972, 1975) extended the definition of partially balanced
designs from incomplete-block designs to designs for nested blocks: if either the blocks
or the subblocks are ignored the design should be partially balanced, and the associa-
tion scheme must be the same in the two cases. Houtman and Speed (1983) showed
that such designs are generally balanced.

Of course, in a nested partially balanced block design it may happen that either
the design in blocks or the design in subblocks (or both) is partially balanced with
respect to an association scheme formed from the original one by merging classes.
Banerjee and Kageyama (1993) give some examples. Homel and Robinson (1972)
conjectured that the requirement for the association scheme to be the same is unne-
cessary, in other words, that if the design in blocks and the design in subblocks are
both partially balanced then the two association schemes are both formed by mer-
ging classes in a third association scheme, with respect to which the whole design in
partially balanced. The design A in Figure 1 is a counter-example. It is not generally
balanced, so it cannot be partially balanced. However, the design in blocks is group
divisible, while the design in subblocks is cyclic.

6. Assessing designs

If combination of information is envisaged when the experiment is designed, how
should the design A be chosen?

A treatment contrast « is simple, or elementary, if 't = 7(0) — 7(n) for some
treatments 6 and 7. Call this contrast z,. We shall measure the quality of a design A
by the size of the average variance of the estimators of simple contrasts, assuming that
information is combined from the plots and subblocks strata and that % is known.
The smaller is this average variance the better is the design. From (5), this average
variance is equal to g(A, ¥)¢p, where '

1
9(AY) = ——=< > "> "1}, Lpszo, (7
n(n~1) & A :
(Of course, Lpg depends on both A and P.)

THEOREM 1. For every design A, g(A,4) = 2tr Lpg/(n — 1).
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Proof. For each fixed 6,
zxénL;sw‘?n = Z (Lps(6,0) — Lps(8,m) = Lpg(n,0) + Lpg(n,m))
n#£0 nF#0

= > (Lpg(0,0) — Lpg(8,m) — Lps(n,0) + Lps(n,m)) -
neoe

The row and column sums of L;g are equal to zero, so

1 -
g(A,’l/)) = mQ’l’Le;aLps(a,G)
= il tr Lpg. O

If A and T are two designs, write A =y T if g(A,9) < g(T,¢), meaning that
A is at least as good as I' for this value of 9. Similarly, put A =, ' if g(A,9) =
9(T',9), meaning that A and I are equally good for this value of %, and A >, T if
9(A,¥) < ¢g(T', %), meaning that A is strictly better than I for this value of 1.

Although we expect 9 to be in [1, 00}, in fact ¥ could be any non-negative number.
However, the values 9 = 1 and 3 = oo are special. When ¥ = 1 we have {5 = {p
and so the subblocks have no role and the strata Wp and Wg can be collapsed into a
single stratum. Let A g be the quotient block design for the structure b/(ck) obtained
from A by ignoring the subblocks. Then g{A,1)ép is the average variance of the
estimators of simple contrasts in Ag using only intrablock information.

Let > be the partial order on block designs such that > means “has a smaller
value of the average variance of the intrablock estimators of simple contrasts than”.
Then A 3= T if and only if Ap %= I'p. At the other extreme, if 1 = oo then g = co.
As Williams and Matheson (1994, Section 8.3) explain, this forces all estimation to
be done in the plots stratum, as if the subblock effects were fixed, making an extra
contribution to (3). In practice, this is also done if 1 is finite but large. Let Ag be
the quotient block design for the structure (bc)/k obtained from A by ignoring the
blocks. Then A 3o I' if and only if Ag = Ts.

When A is equi-replicate and generally balanced we can calculate g(A, ¢) directly
from the canonical efficiency factors, as the following theorem shows.

THEOREM 2. Let A be an equi-replicate generally balanced design for m treatments
with replication r in nested blocks. Suppose that the basic contrasts are xq, ...,
Zn—1, and that the canonical efficiency factors for x; are ep; and eg; in the plots and
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subblocks strata, fori=1, ..., n—1. Then

Q(Aﬂ/’) = ﬁfll—)’

where A(A, 1) is the harmonic mean of the values epi + ¥ teg;.
Proof. Since A is generally balanced with replicé.tion 7, the eigenvalues of Lpg are 0
and rep; + ry " leg; for i = 1,...,n—1. Thus
n—1
1 n—1
trLpe = = .
tops Z repi +r leg;  TA(A, )

i=1

From Theorem 1, g(A, ) = 2/(rA(A,4)). O

The quantity A(A, co) is the harmonic mean of the ep;. It is the A-criterion of
the block design Ag. Similarly, A(A, 1) is the harmonic mean of the e pi + eg;, which
is the A-criterion of the block design Ag. Theorem 2 for % = oo and ¥ = 1 give
Equation (2.9) of John (1987) for the block designs Ag and A B-

Usually ¢ is unknown a priori and must be estimated from the data. Let h(A, )
be the average variance of simple contrasts, divided by £p, when design A is used
and ¢ is estimated. When 1 is estimated the estimators of treatment contrasts
are no longer linear, so this variance depends heavily on the distribution of Y —
E(Y). Califiski (1996) and Califiski and Kageyama (1996) investigated the behaviour
of the function analogous to h for ordinary block designs. Following Kackar and
Harville (1984), they showed that h(A, ) > g(A, 1) but remarked that otherwise the
behaviour of h(A, 1) appears to be intractable, and that the approximation suggested
by Kackar and Harville (1984) is unlikely to be useful unless Y has a multivariate
normal distribution and N — n is very large. In particular, there appears to be no
analogue of Equation (7) or Theorem 2 for h(A, ). Califiski (1997) made a similar
investigation for nested blocks, but under different assumptions from those in this
paper: he assumed that either Lp = 0 or information from the blocks stratum is
combined with information from the plots and subblocks strata. He reached similar
conclusions about the intractability of h.

Programs such as the reml directive in Genstat print estimates of variance as if
% had not been estimated, even though variances are increased when 1 is estimated
(see also Kenward and Roger, 1997). For large values of 1, this increase in variance
nullifies the decrease in variance from combining information. Thus many statisticians
revert to the inter-subblock analysis if 9 is large.

Write A Jy I' if A(A,9) < A(T,%). In the absence of precise knowledge of 1
and of Jy, it is reasonable to hope that if %’ is close to 1 then the partial order 3=
is close to the partial order dy. Previous experiments on similar experimental units
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may suggest an interval ¥ of plausible values for . Although the best choice of A
may depend on the value of 1, there may exist a design which is near-optimal under
7y for all ¢ in 0.

7. Comparing designs

Suppose that A and I'" are two designs for nested blocks. If A = I' and we use T’
rather than A, then the relative increase in variance is g(T',v)/g(A,¥) — 1. Since
A may be better than I" for some values of ¢ and worse for others, it is sensible to
compare A and T' across a range of values by plotting g(T",%) and g(A, %) on a log
scale against . Lower values of g correspond to the better design. The use of the log
scale on the vertical axis implies that vertical distances between the plotted curves
have a consistent interpretation as relative decrease in variance. Moreover, there is
some merit in showing 1 on a log scale too, because ¥ is also a ratio. This graphical
approach remains possible when there are three or more designs to be compared.

If A is not equi-replicate and generally balanced then g(A, ) must be evaluated
from (7) by numerical inversion of Lpg or from Theorem 1 by numerical evaluation of
the eigenvalues of Lps. However, if A is equi-replicate and generally balanced then
g(A, 1) is a rational function of . In fact, if A and T' are both equi-replicate and
generally balanced then

ApyT < AAY) > AT, )

1 1
< , 8
zi: ef; +vle; 21,: eb; + 9 tel; ®

where the superscripts show which design the canonical efficiency factors refer to.
Inequality (8) is equivalent to a polynomial inequality for .

FEzample 2. Suppose that there are 12 treatments to be applied to 36 plots, and that
the set of plots is partitioned into three blocks of three subblocks of four plots each.
Three candidate designs are shown in Figure 2. The design A was chosen because
Ag is optimal, being the dual of a balanced incomplete-block design. However, it is
not resolved, so Ap is not as good as it might be. The other two designs I" and ® are
both resolved, so I'g and ®p are both optimal. In fact, I, which is constructed by
extending the idea of rectangular lattices by the method of Bose and Nair (1962), is
the best design that I know among resolved designs, while ® has optimal ®s among
doubly resolved designs (Bailey, 1992) and is partially balanced with respect to the
extended group divisible association scheme 2/3/2.
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dm| 2 3 6
f -]:0 0
[1[4]7]10]1]5]8]111]6]9]12] 74
A=[2[4[9[11]2]5]7[12]2]6]8]10] 1
€gs 0 0 =
(3l4][8]12[[3[5]0]10]3[6]7] L] 1
3 3
ep :’I 1 Z
dim|5 4 2
(([2[3[4[5[6[7[8 [9[0][11[12] I3 1000
F=[1]2[7]11][5]6[4[12][9]10[ 3 [38] es |0 }L -;-
[1]2]8[12]5]6[3[1I[[9[10[ 4] 7]
; 81
ep i 2
dim |7 4
[I[2]3[4]5[6[7[so[o[murz] 7'2|° 0
o=[TEo [N AIDE[s 6] . [o
(5]6[11]12][3T4]9J10[[1]2[ 78]
e 1l
P 2

Figure 2. Three generally balanced designs for twelve treatments in three blocks of
three subblocks of four plots, with their tables of canonical efficiency factors
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Figure 2 also includes the table of canonical efficiency factors for each design.
Hence we find that

33 17 24
33 169 49
PR s
and
. 8
(q> P) = 7+¢+1

The functions g(%) are plotted agamst 1 on a log-log scale in Figure 3.
The formulae for g show that

Try® = (@W-12>0.
So I' is at least as good as & for all values of 9, so there is no point in considering ®

variance

0.9

0.8

4 8 16 32 64

Figure 3. Average pairwise variance for each of the designs in Figure 2
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further. On the other hand,

5+ 2v7
3

The value 3.43 is well within the range of plausible values of ¥ in many practical
examples. If you think that 1 will surely be larger than 5 then choose A. If you think
that 1 will probably be between 1 and 2 then choose I'. What should you do if you
think that ¢ lies in [2.5,4.5]? The worst relative loss by choosing I is at 1 = 4.5,
where g(T',4.5) is 0.9% more than g(A,4.5), while the worst relative loss by choosing
Ais at ¢ = 2.5, where g(A,2.5) is 1.3% more than g(T, 2.5). So a minimax strategy
chooses I'. In fact one could choose either design if 1 € [2.5,4.5] because the relative
increase in variance for the wrong choice is almost negligible. However, if 4 really
is unknown then the loss from the wrong choice could be as high as 6%, or more if
Pp<l. O

PryA &= W -100-1<0 < ¢< ~ 3.43.

Consider the 2(n — 1) ordered pairs (ep,es) which occur as canonical efficiency
factors for the same basic contrast in either of the two designs. Those with eg = 0
contribute constant terms to (8); those with eg # 0 but with a given value u of the
ratio ep/es contribute the multiple eg' of the same rational function v [(up+1) of ¢
to (8). For positive real numbers u, let ma(u) = 3, 1/e4;, the sum being taken over
those ¢ for which e§; # 0 and e$;/e$; = u; if there are no such i then ma (u) = 0.
Define mp(u) similarly. Let

d(A,T) = [{u € R* : ma(u) # mp(u)}| .

Then the inequality (8) is equivalent to an integer polynomial inequality in v of
degree d(A,T"). For small values of d(A,T), the explicit solution of (8) may be as
useful as the plotted graphs of g(A,v) and g(T, 9).

All three pairwise comparisons in Example 2 had d = 2, which led to quadratic
inequalities and clear conclusions. The next example also has d = 2.

Ezample 3. Again suppose that there are 12 treatments, but that now there are
72 plots, arranged in six blocks of two subblocks of six plots. Figure 4 shows two
possible designs. The design A is affine-resolved, so Ap is optimal and Ag is optimal
among resolved designs (Bailey, Monod and Morgan, 1995). The design I is partially
balanced with respect to the extended group divisible association scheme 3/2/2. It
is not resolvable, so I'g < Ap. However, I's is group divisible for three groups
of four, with between-group concurrence equal to one more than the within-group
concurrence. It is semi-regular, so Theorem 2.2 of Cheng and Bailey (1991) shows
that I'g is optimal.
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dim|5 6
[1]3]4]5]9]1i2]6]7[8J1012] —
C[2[4[5[6[0[3[7[8[9[1L][12] 44 |0 o
_[2[3[5[6[7[1L]1][4][8] 0 [10]12] !
(L[3[4[6[7[8[2[5]o]t0]ii|12] s |0 g
[2[4]5]7[8] 9 [1[3]6]10]11]12] 5
[3[5]6[8[9]1012]4] 7 J11]12] er |1 &
dm|2 3 6
[1]2]3]4]7J10]1]4]5]6 ] 8[12] )
[2[5]7][8] 911 3]6]9]10[11]12] fB |0 9 0
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= 1
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[1]6]7]8] 9 [10][2]4[8]10]11]12] ep |1 5 3

Figure 4. Two generally balanced designs for twelve treatments in six blocks of two
subblocks of six plots, with their tables of canonical efficiency factors

From the canonical efficiency factors we calculate

66 36y
and
66 43 sy
290V =g gt
Thus
ApyT < 82 —6ly—1<0 <= o,bg&%- VAT 764,

Table 1 shows some values of g(A,%) and g(T,4). The curves are plotted in
Figure 5. For 9 € [1,00] the worst relative loss by choosing I" is at ¢ = 1, where it
is 3.4%, while the worst relative loss by choosing A is at 9 = co, where it is 0.6%.
Since subblock information is unlikely to be recovered if 1 is much bigger than 8, we
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Table 1. Average variances of simple contrasts for the designs in Figure 4

Y | 278 272 91 g 2 4 8 16 oo
9(A,9)]0.2354 0.2727 0.3074 0.3333 0.3499 0.3593 0.3644 0.3670 0.3697
g(T, %) |0.2652 0.2992 0.3265 0.3447 0.3554 0.3612 0.3643 0.3658 0.3674

variance
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Figure 5. Average pairwise variance for each of the designs in Figure 4

can make a clear recommendation in this case: use A unless you are absolutely sure
that subblock information will not be recovered, in which case use I'. O

We can expect more complicated behaviour when d > 2, for the graphs of g(A, 1)
and g(T',9) may cross up to d(A,T) times. But both functions are monotonic increa-
sing and differentiable, so |log g(I', 1) — log g(A, )| cannot be very large between the
crossing points.

In Example 3 the clear recommendation is to use the design which is better for
1 = 1. Sometimes the opposite is the case.

Ezample 4. Figure 6 shows two designs for nine treatments in nine blocks of two
subblocks of size two. Design Z is cyclic; it was chosen because, according to John
and Mitchell (1977), Ep is optimal. Design II is partially balanced with respect to a
Hamming association scheme H(2,3), and Il is only slightly worse than =g.
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dm|2 2 2 2
[(1[2]4]8] [2[3]5]9] fp | L 2EE 24y 242
[(314]6]1] [4]5] | 4 16 16 16

E=[5[6]8]3] | 7]9]4] es | 0 6—-3z 6—-3y 6-—3z
718]1]5] [8]9 ] 16 16 16
9f1]3]7 o |3 4tz 44y 4t

Plg 78 8 8

Herez = e+ e, y =€ +¢’,and z =
€*+¢5, where € is a primitive ninth root

of unity.
dm| 4 4
2]3[4]7] [A3[5]8] 4 |1 1
1[2][6[9] [5]6]1[7] 16 4
m={4]6]2]8] [4]5[3]9] es | 2L 0
(890114 (7][9[2]5] 16
(7[8]3]6] 3 3
|5 1

Figure 6. Two generally balanced designs for nine treatments in nine blocks of two
subblocks of two plots, with their tables of canonical efficiency factors

Graphs of g(v) are shown in Figure 7, which should be contrasted with Figure
5. Although d(Z,II) = 4, the graphs cross only at 1 = 3/2, where the polynomial
equation = =y, II has a triple root. Thus Z 3= IIif and only if 4 < 1.5. The difference
between g(=,1) and g(I1, 1) is negligible, but = is 5% worse than II at ¢ = co. So it
seems safe to recommend choosing II rather than Z. 0O

The contrast between the conclusions in Examples 3 and 4 shows that it is not
wise to choose a design solely on its behaviour at 1 = 1 (that is, ignoring subblocks)
or on its behaviour at ¥ = oo (that is, ignoring blocks).

I have deliberately plotted the graphs over a much wider range of ¥ than seems
necessary for practical purposes at first sight. Although we expect 1 to be greater
than 1, it may happen that ¢ < 1. Figures 3 and 7 demonstrate that variance curves
which are close for 9 € [1, 8] may diverge sharply for smaller values of . If possible,
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variance

1.1

09 1

(1

o= -
Ll o
IS
[
[ S\
I

8 16 32 64

Figure 7. Average pairwise variance for each of the designs in Figure 6

we want to avoid choosing a design which is much worse than a competitor if 9 turns
out to be a little smaller than it was expected to be. At the other end of the range,
most statisticians would revert to the inter-subblock analysis if 9 > 8 (some would do
this even at {b > 4). But this is exactly the analysis for 1 = co. So if the graphs are
curtailed at, say, 9 = 8, then they should be augmented by the values at ¥ = co. If
the information is given in tabular form, as in Table 1, then the value 1 = co should
always be included.

8. Combinatorial considerations

Preece (1967) defined a nested design A to be a nested balanced incomplete-block
design if both Ap and Ag are balanced incomplete-block designs. Such a design must
be equi-replicate with ck < n; moreover, Ag(8,7) =r(k—1)/(n — 1) and Ag(8,7n) =
r(ck—1)/(n—1) whenever 6 3 7. All contrasts in a nested balanced incomplete-block
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design are basic contrasts, with

n —ck
s = (n—1)ck’
e — n  (c—1)
§ (n—1) ck '’
_ (k-1
er = n-1) &k °

Ezample 5. An example A withn =0 =9, ¢ = 2 and k = 4 can be constructed
by writing the treatments in a 3 x 3 square array. For each treatment there is a
corresponding block which contains all the other treatments. These treatments are
allocated to the two subblocks in this block in the manner shown in Figure 8. The
figure shows the block which omits the treatment in the empty cell. The treatments
labelled * are in one subblock, those labelled o in the other.

* | %
o] ¢}
[e] o]

Figure 8. One block of a nested balanced incomplete-block design for nine treat-
ments: see Example 5

This design has fp = 1/64, es = 9/64 and ep = 27/32 for all contrasts. Thus
A(A, ) = (54 + 99 ~") /64 and so Theorem 2 shows that g(A, ) = 16¢/(541) + 9).
0

Morgan (1996) gives a table of known nested balanced incomplete-block designs
with n < 14 and » < 30.

Following Kiefer’s (1958) definition of balanced block design, we may generalize
Preece’s definition to nested balanced block designs. A nested design A is a nested
balanced block design if

(1) it is equi-replicate;

(ii) each pair of entries in X’Rg differ by at most one (these entries show how
often a treatment occurs in a subblock);

(iii) all off-diagonal elements in Ag are equal,

(iv) each pair of entries in X' Rp differ by at most one;

(v) all off-diagonal elements in Ap are equal.

For example, if Ag is a complete-block design, or if A is a resolved balanced
incomplete-block design, then A is a nested balanced block design.
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Califiski (1971) commented on the importance of block designs in which all
non-1 canonical efficiency factors in the plots stratum are equal. In such a design
the treatments subspace of R? is an orthogonal direct sum of two parts, one of which
is orthogonal to the blocks subspace and the other of which has first order balance with
respect to the blocks subspace, in the terminology of James and Wilkinson (1971).
Mejza and Kageyama (1998) conjectured that if Ag has this property then so has Ap.
The design A in Figure 9 provides a counterexample.

If a block design is the dual of a balanced incomplete-block design but is not
itself balanced then it has Califiski’s property. Such designs are optimal, as we noted
in Example 2. Cheng and Bailey (1991) proved that strongly regular graph designs
are optimal if they have Califiski’s property: hence the optimality of I'g in Example
3. (Regular graph designs are block designs whose concurrences take only two values,
differing by one. Strongly regular graph designs are regular graph designs which are
partially balanced with two associate classes.)

Block designs with Califiski’s property are often very efficient. Other examples
include the affine-resolvable designs, such as Ag in Figure 4, and various others, such
as Ap and ®g in Figure 2, I'g in Figure 4, and I'g and ®p in Figure 13.

We also need the concept of isomorphic designs.

Designs I" and A for nested blocks are isomorphic (written I’ 2 A) if there is a
permutation ; of the plot set  and a permutation 7o of the treatment set © such
that

(i) mo(T(w)) = A(my(w)) for all w € Q;

(ii) o and g are in the same block if and only if 71(e) and 71(8) are in the same
block, for all & and 8 in Q;

(iii) o and B are in the same subblock if and only if 7 (a) and 7y (B) are in the
same subblock, for all @ and 3 in Q.

Isomorphism of block designs is defined similarly, but omitting one of conditions
(ii) and (iii). Thus Ag = T'p if and only if (i) and (ii) are satisfied, while Ag & g if
and only if (i) and (iii) are satisfied. If A = T then Ap = T'p and Ag = T'g but it is
possible to have Agp = T'g and Ag = I's without A =T,

Ezample 6. Suppose that there are eight treatments to be applied to 32 plots arranged
in eight blocks of two subblocks of two plots. Figure 9 shows three possible designs.
They are all cyclic. John and Mitchell (1977) report that 'z is optimal. But & B =
I'p,soT'=; ® and @3 is also optimal, while Ap is only slightly worse. On the other
hand, Ag is group divisible for two groups of four, with between-group concurrence
equal to one more than the within-group concurrence, so the corollary to Theorem 3.1
of Cheng (1978) shows that Ag is optimal, while I'g and ®g are worse. In fact,
Is =2 ®g,s0 ' =4, ¥. Note, however, that I’ cannot be isomorphic to @, because the
canonical efficiency factors ef and e® are different.
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Figure 9. Three cyclic designs for eight treatments in eight blocks of two subblocks
of two plots, with their tables of canonical efficiency factors
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The graphs g(1) are plotted in Figure 10. The curves for A and I' cross twice,
and are very close between those crossing points. As in Example 4, design A can
safely be recommended in preference to I'. More surprising, perhaps, is that although

'=®andI'=, @, T >y @ for all ¢ in (1,00). O

variance
+ 1.0

r 0.2
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L L o
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m —-
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(e2]
g

Figure 10. Average pairwise variance for each of the designs in Figure 9
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9. Strategies for choosing designs

In the literature, strategies for choosing designs for nested blocks seem more implicit
than explicit. It is generally assumed that we should seek designs A such that Ap
and Ag are optimal block designs for the structures b/(ck) and (bc)/k respectively.

The knowledge that balanced block designs are optimal among equi-replicate
block designs suggests the first strategy.

Strategy 1 If the design must be equi-replicate, choose A to be a nested balanced
block design.

Nested balanced block designs are optimal when 9 = 1 and when 9 = oco. Do
they remain optimal for intermediate values of 1?
Strategy 1 is impossible for most quartets of values of n, b, ¢ and k.

Strategy 2 If there are no nested balanced block designs, choose A so that both
Ap and Ag are optimal block designs.

For example, if the design must be equi-replicate and ck = n then A must be
a resolved design and Ag must be optimal even over non-resolvable block designs.
Examples include square lattice designs, which were introduced by Yates (1936) and
shown to be optimal by Cheng and Bailey (1991).

Again, are they optimal for intermediate values of 1?

Strategy 3 Choose a block design ® optimal for treatment-set © in b blocks of
size ck. Choose A by partitioning the blocks of ® into subblocks of size k (which
ensures that

(i) Ap =9))
in such a way that

(ii) A is generally balanced, and

(iii) Ag is optimal subject to (i) and (ii).

This is the strategy recommended by Yates (1939), Bose and Nair (1962) and
John and Williams (1995, Chapter 4) when the design must be equi-replicate and
n = ck: choose an incomplete-block design that is optimal subject to being resolved.
An example is the affine-resolved design A in Figure 4, which is optimal over resolved
designs but not as good as the non-resolvable design I in Figure 4 when v > 8. The
strategy also seems to be implicit in Mejza and Kageyama (1995). Similar advice for
complicated block structures, that is, optimize for the larger blocks first, is given by
Nguyen and Williams (1993) and Williams and John (1996).

Does this strategy give very poor designs for large values of ¢?

We can consider the opposite strategy.
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Strategy 4 Choose a block design ® optimal for treatment-set © in bc subblocks of
size k. Choose A by grouping the subblocks of ® into blocks of size ck (which ensures
that

(i) As = @;)
in such a way that

(i) A is generally balanced, and

(ili) Ap is optimal subject to (i) and (ii).

Does this strategy give poor designs for small values of 1?7

Strategy 4 is effectively recommended by Gupta (1993), because he does not use
the information in the subblocks stratum.

In both Strategies 3 and 4, one might want to ignore condition (ii).

Even if the first choice in Strategies 3 and 4 is easy because optimal block designs
have been tabulated, the second choice may involve a search over an unreasonably
large number of permutations. A practical alternative is to generate a few thousand
permutations randomly and choose the best. The randomize directive in Genstat
provides a particularly easy way to generate such constrained permutations randomly.

Strategy 5 If Strategy 2 is impossible, choose A by Strategy 3 and I" by Strategy 4.
Compare the behaviour of g(A, ) and g(T, %) for ¢ in 0. If g(A, %) < g(T, %) for all
¥ in U then choose A; if g(T', ) < g(A, ) for all ¥ in ¥ then choose I'. Otherwise,
minimize the risk of a bad choice by choosing the design with the smaller value of the
maximum relative increase in variance, the maximum being taken over 9 in 0.

This strategy assumes that no design is better than both I and A for any 9 in
¥. Even if ¥ C [1,00], is this true?

10. Positive results

If we restrict attention to equi-replicate designs (and later to designs which are binary
in blocks) we can prove some definite results about optimal designs. Denote by Drsp,c,k
the class of equi-replicate designs for n treatments in b blocks of ¢ subblocks of k plots,
and by ﬁn;b,c,k the subclass of Dy . x Whose designs are binary in blocks (that is,
no treatment occurs more than once in any block) and therefore necessarily binary in
subblocks also.

THEOREM 3. If A is a nested balanced block design in Daspyck then A =y T for allT
in Dngp.cx and all Y in [1,00].

Proof. Since Lp = rI — k~!Ag, the trace of Lp is maximized when tr(Ag) is mini-
mized. Since Ag is a balanced block design, tr(LIA,) is maximal in Dpp,c k. Similarly,
since Lp + Lg = rI — (ck)™'Ap and Ap is a balanced block design, tr(L8 + L§) is
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maximal in Dp;pc k. Thus if I' € Dyyp o, and 9 > 1 then

tr (LBs) = tr (L%+210-L§)

-1 1

= (’/’w )tr(L,A,)—i—Etr(LlA,-l—L@)
-1 1

> WT)tr(LE)+Ztr(LE+Lg)

so LS has maximal trace in Dy c -

Because Ag and Ap are both balanced block designs, the matrix L8 is comple-
tely symmetric for all 9. Keifer’s (1975) theorem on universal optimality shows that
AryTforalll'in Dpperifp >1. O

Theorem 3 is analogous to Corollary 3 of Bogacka and Mejza (1994), for designs
with two strata, and to the result in Section 2.3 of Morgan (1996), who combines
information from all three strata. It is similar to the results of Markiewicz (1997,
1999) except that his two sets of nuisance parameters are not nested. It is not the
same as Gupta’s (1993) Theorem 4.1.

THEOREM 4. Let b < n < be. If A is a design in ’Z_)n;b,c,k such that Ag is balanced
and Ap is the dual of a balanced incomplete-block design then A =y T for all T in

Dhnsp,c,k and all ¢ in [1,00].

Proof. The canonical efficiency factors of A are

dim |n—-b b-1

/B 0 f

es |1l—e 1—e—f

ep e e

where e = n(k — 1)/[(n — 1)k] and f = (b —r)/[(b — 1)r]. Thus the eigenvalues of
r~1L4¢ on contrasts are, in descending order,

-1 1 (-1 1=/
__1/) e+¢1, . " e+ e

n — b times b — 1 times
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For 1 <7< n—1,let Ti(T') be the sum of the first i largest eigenvalues of r~*L% ¢ on
contrasts. Thus T;(T) is the maximal value of

Z % [(d}; 1)x’LE$ + %x' (L% + L) :c]

TEX

for orthonormal bases X of i-dimensional spaces of contrasts. But

1 .
E —2'ILx > e
T

T€X

because tr(L}L) = r(n — 1)e = N — be. The rank of LT is at most b — 1, so

1
m}a}xmezx ;a:’ (Lp+L5)z=

forl1<ign— bandtr(LF—I—LF)-r[n—1~(b 1)f]=N —bso

(7T r — ] — —
mfxz e (Lp+L)z>(n—b)+(E—n+b)(1-f)
zEX
forn—-b<ig<n-1.
Hence T3(A) < Tiy(T) for i = 1, ..., n — 1. The argument of the proof of
Theorem 3.3 of Bailey, Monod and Morgan (1995) shows that A 3=, . O

A similar argument proves the next theorem.

THEOREM 5. Let b < n=ck. If A is an affine-resolved design then A =y T for all
T in Dup,e . and all ¥ in [1,00].

Apart from balanced incomplete-block designs and their duals, optimality theo-
rems for block designs are typically restricted to classes D of designs for which tr(Lp)
Is constant and where a design which minimizes tr(L%) also has other good properties.
If we restrict ourselves to Dy, ¢k then, for each value of 1, tr(Lpg) is constant over
the class. Unfortunately, minimality of tr(L%) and tr((Lp+ Ls)?) does not guarantee
minimality of tr((Lp + 1%~ Lg)?) for all 4 in [1,c0]. In Example 6 the designs ® and
T have the same value of tr(L%) and of tr((Lp + Ls)2) but

tr ((L% + lL‘s’)z) > tr ((LF + lLF>2)
'lﬁ P ,.p S

for all 9 in (1,00). So there seems little hope of proving the optimality of any non-
balanced design for all ¢ in [1, o0].
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THEOREM 6. Let D be a subclass of Dpp k. Suppose that A is a design in D
satisfying either of the following conditions:

(i) A is partially balanced with two associate classes and one canonical efficiency
factor €5 equal to 1;

(%) A is generally balanced with a basic contrast x; such that

ep1 > €py =€p3=::-=€pp_1
and

epr1t+es1 >epgtesa=---=epn_1+egn-1.

Let ¢ € [1,00]. If A minimizes tr((Lp + ¢~ 'Lg)?) over D then A %=y T for all T
in D.

Proof. Since tr(Lps) is constant over D for each ¥ and A minimizes tr(L%¢) over D,
all we have to do is mimic the proofs of the analogous optimality results for block
designs.

(i) If A is partially balanced with two associate classes then LS and L% have
just two common eigenspaces on contrasts with corresponding canonical efficiency
factors epi, es1 and epa, es2. By assumption ep; =1, and ep; + €51 < 1, s0 eg; =
0. Thus r=* (L§ + ¢~ 'L%) has two eigenvalues, 1 and epy + 9~ legy. Note that
epa+ ¥ les2 < eprtesy < 1.

For'in D, =’ ng < rz’z and 2’ (LII; + Lg)x < ra’z for all contrasts . Since
¥ >1and

Dps =g 4 2 (15 4 1B),
the maximum eigenvalue of r~*LL ¢ is at most 1.

Applying Theorem 2.1 of Cheng and Bailey (1991) to the eigenvalues of 7~ Lpg,

and using Theorem 1 shows that g(A, ) < g(T, ).

(ii) Since ¥ > 1,

ep1 + %em = WJ; D ep1 + %(em +es1)

¥-1 1
¥ Y

= epg3+ —eg2
Y

v

ep2 + —(ep2 + es2)

and epy + ¥ legy = ep; + v leg; for i = 3, ..., n—1. Now Theorem 3.1 of Cheng
(1978) shows that g(A,¢) < g(T,v). O



Choosing designs for nested blocks 113

COROLLARY 6.1. Let D be a subclass of ’Dmb,c’k in which U'g is balanced for all T
inD. Let A be a design in D. If Ag is a regular graph design and A satisfies either
of the conditions in Theorem 6 then A =y I for allT in D and all ¢ in [1,00].

Proof. All designs I' in D have the same single canonical efficiency factor e in the
plots stratum. Since Ap is a regular graph design, tr(A%) is minimal, and therefore

Z (e+ eﬁi)2 < Z (e+ egi)2

i i

for all T in D. But ), ef; has a constant value for T in D, and so

1.\ 1 0\?
e+ —eS; ) < e+ _eri)
(e 5h) <D(e+gs
for all ' in D and all 4. In other words, A minimizes tr(L%g) for all ¥, and so
Theorem 6 applies. O

COROLLARY 6.2. Let D be a subclass of ﬁn;b,c,k in which I'g is balanced (or complete)
for allT' inD. Let A be a design inD. If Ag is a reqular graph design and A satisfies
either of the conditions in Theorem 6 then A %=y T for allT in D and all ¢ in (1, 00].

Proof. All designs I' in D have the same single canonical efficiency factor f in the
blocks stratum. Since Ag is a regular graph design,

> (efs)” < > (eb)”

i i

for all " in D. But
tr ((Lgs)z) = Z ((V)w Der epi + = (1 - f))

and )7, ep; is constant for ' in D, so A minimizes tr(L2) for all 1. Thus Theorem
6 applies. O

For example, when b = ¢ = k + 1 and n = ck then rectangular lattice designs
are regular graph designs which satisfy condition (i) of Theorem 6. Hence they are
optimal over resolved designs.

The results given in Section 3 of Mejza and Kageyama (1995) are comparable to
Corollary 6.2. Those authors cover a wider range of optimality criteria than g() but
for subclasses of D,y o 1 for which Lg = 0.

Of course, if Ap is balanced but treatments are not orthogonal to blocks in A
then Ag cannot satisfy condition (i) of Theorem 6. However, the methods of proof of
Theorem 6 and Corollary 6.2 also prove the following.
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THEOREM 7. Suppose that ck < n. Let D be a subclass of ’Dn;b,c,k in which I'g is
balanced with canonical efficiency factor e for allT" in D. If A is a design in D such

that Ag is a strongly regular graph design with one canonical efficiency factor equal
to e then A =y ' for allT in D and all ¢ in [1,00].

FErample 7. Let D be the subclass of ﬁls;w,g,g consisting of designs I" such that I'p is
balanced. Then f§ =1/9 for all T in D.

Figure 11 shows a design A in D for which Ag is group divisible with four groups
of four. The between-group concurrence of Ag is one more than the within-group
concurrence, and the between-group canonical efficiency factor is equal to 8/9. Hence
A is optimal in D for all ¢ in [1, c0].

(AlE[JD]G[I] [A[H|M[CIE]N]
AlfJofB[LIM] [EJI[M[F]K]P]
(BIGIN|D|F[M) [B[F|IT[C|H[J]
ALEILIOJF[JIN] [A]K[N]B[J]P]
(CIXK[M[D]J[O] [GIKJOJH]I[N]
(BIE|K[|CJG]L] [A[G]PJCIF[O]
(GIJIMIH|L[P] [C[I[P[D[LIN]
(B][H|O]D|E[P]|] [A[F][L[D[H[K]

Figure 11. Optimal design for sixteen treatments in sixteen blocks of two subblocks
of three plots

Banerjee and Kageyama (1993) also give a design in D. Its quotient design in
subblocks is also partially balanced with two associate classes, and it has one canonical
efficiency factor equal to 8/9, as shown in Table 2. However, its concurrences differ
by two. It can readily be checked from the two tables of canonical efficiency factors
that their design is inferior to A whenever ¢ # 1. a

Table 2. Tables of canonical efficiency factors for the design in Figure 11 (left) and
the design given by Banerjee and Kageyama (1993) (right)

dim | 3 12 dm |6 9
1 1 11
fBlg 3 fBls 3
€s 0 % €s % 0
8 2 4 8

€P {9 3 €P |9 39
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11. Nested regular graph designs

Suppose that Ag is a regular graph design, with concurrences A and A + 1. Let
my = r(k—1)—(n—1)A, so that, for each treatment 6, there are m, treatments n with
As(8,m) = A+1. Suppose that Ap is also a regular graph design, with concurrences u
and p+1, and let mg = r(ck — 1) — (n — 1)p. If there are ¢() treatments 7 such that
As(6,m) = A+1 and Ap(6,n) = u+ 1 then the n — 1 treatments 7 other than 8 fall
into the following four categories.

As(8,m) | A(6,m) | number of treatments

A w n—1-—my; —mg+t(0)
A p+1 mg — t(0)

A+1 12 ml—t(G)

A+1 p+1 (9)

Define A to be a nested regular graph design if Ag and Ap are both regular graph
designs and t(f) = min{0, m; + mg — n + 1} for all .

LEMMA 1. Suppose that ck < n. Let D be any subclass of ﬁn;b,c,k for which both
I's and I'p are regular graph designs for allT in D. If a design A in D is a nested
regular graph design then A minimizes tr(Lg) over D for all ¢ in [1,00].

Proof.
1 1 1/1 1
P = (“ B zAS> t3 (EAS - aAB)

1
= rl— = [e(¥ — 1)As + Ap].

Lps = Lp+

Since Ag and Ap have constant trace over D, tr(L%g) is a positive linear function of
g, where

g=_> lew~1As(0,m) + Az, )],
8 n#6
which is itself a positive linear function of

DOl — DA+ u? = >t — DA+ p+1)°
[’

[}

=S O — DA+ 1) + w2 + SO el - DO+ 1)+t 1.
9 [’]

But this is equal to 2¢(y) — 1) 3~ ¢(f), which is minimized when ¢(6) is minimized for
all 4, because vy > 1. O
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Both designs in Figure 6 are nested regular graph designs. However, neither of
them satisfies either of the conditions in Theorem 6.

In fact, it is possible to show that nested regular graph designs minimize tr(L%)
over the whole of Dyg.g 2,2. However, the analogous result is not true in general.

Ezample 8. The design I' in Figure 9 is a nested regular graph design with concur-
rences shown in Table 3. Thus
" = 24x4+16)2(¢—1)+ 12 +16[2(x — 1) +2)?
= 16[8(y —1)? +12(y — 1) +11].
The design = in Figure 12 is partially balanced with respect to the association scheme

2 % (2/2), which has five associate classes. The concurrences given in Table 3 show
that Zp is not a regular graph design. Moreover,

m

€ = 16x4+8x9+242(p—1)+ 1% +8[2(p — 1) + 2
= 16[8(x — 1) +10(x — 1) +12]

so q' > ¢% whenever 1 > 3/2. This suggests that design = might be better than T'
for some values of 1.

dm|2 1 3 1

0 o L1

1[4]/2]3] [5]8[6]7] fB 11

- _[1[6]2]5] [BI8I4[7 L3 .
13157 214 6]8

[L[3]5]7] [2]4]6] li1s

P13 4 1 2

Figure 12. A fourth design for eight treatments in eight blocks of two subblocks of
two plots

Table 4 shows the variances of the four designs in Figures 9 and 12 for various
values of 1. The design = is the best of the four designs for ¢ in [1.5,4.3]. This is a
very likely range for 9 if information is to be combined. However, one would have to
be very sure that 1 € [1, 8] before recommending = over A, because the relative loss
from Z increases to 11% at 1 = -21- and to 8% at 1 = oo while the relative loss from A
is never more than 2%. O
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Table 3. Pattern of concurrences in two designs for eight treatments in eight blocks
of two subblocks of two plots

design I' in Figure 9 design = in Figure 12
As Ap number of pairs [ As Ap number of pairs
0 2 24 0 2 16
1 1 16 0 3 8
1 2 16 1 1 24
1 2 8

Table 4. Average variances of simple contrasts for the designs in Figures 9 and 12

v |22 2! 1 15 2 4 6 8
9(A,¥)[0.3095 0.4429 0.5834 0.6667 0.7156 0.8066 0.8431 0.8628 0.9286
g(T',) |0.3394 0.4627 0.5884 0.6595 0.7074 0.8083 0.8550 0.8822 0.9864
9(®,1) |0.3059 0.4429 0.5884 0.6692 0.7217 0.8261 0.8711 0.8963 0.9864
9(2,%) |0.4125 0.4932 0.5952 0.6595 0.7048 0.8045 0.8530 0.8819 1.0000

12. Discussion

Although Theorem 3 shows that Strategy 1 is good, the other results in Sections 10—
11 give little hope of finding simple recipes for designs which are optimal for all ¥
when there is no nested balanced block design.

The next example shows that even Strategy 2 can fail.

Ezample 9. Suppose again that there are 36 plots arranged in three blocks of three
subblocks of four plots each, but that now there are only nine treatments. There are
three candidate designs in Figures 1 and 13. Design I was chosen because, according
to John and Mitchell (1977), I's is optimal; T is a cyclic design. Design ® was
chosen because ®p is optimal; @ is partially balanced with respect to the rectangular
association scheme 3 * 3. Design A was constructed by putting Ag = I's and then
rearranging subblocks in blocks so that Ag = ® 5. Thus Ag and A g are both optimal.

As already observed, A is not generally balanced, so comparisons with the other
two designs must be made numerically. The functions g(3) are plotted in Figure 14,
and some specific values are shown in Table 5. We find that & =y I unless 1 > 100,
while the difference between the two designs is negligible for large . There can be
no reason to prefer I' if information is to be combined. The design A is very slightly
worse than @ for ¢ € (1,8.5] and otherwise slightly better. Although there is no
practical difference between A and @, this example is a blow for Strategy 2: although
Ap and Ag are both optimal, A is not optimal for all ¢ in [1,00]. O
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[L[3[7[9][4]6[1[37[9[4]6]
P=(2]4[8[1][5]7[2][4[[8]1[5]7]
[315[9]2]6]8]3[59[2]6]8]

dim | 2 2 2 2
/B % 0 0 0
es | 0 24z 24y 242
16 16 16
ep § M4—-2 14—y 14—z
4 16 16 16

Here t =€+ €8,y = €2+ €, and z = €* + €%, where ¢ is a primitive ninth root
of unity.

dm| 2 2 4
B L 0 0

[2]37]4 3|5]8]1]276] 16
d=[1]7] 8[4] 5 e |0 L1
B 57 6 1
|1 153
16 16 4

Figure 13. Two generally balanced designs for nine treatments in three blocks of
three subblocks of four plots, with their tables of canonical efficiency factors
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variance

} } 1 } t P
1 2 4 8 16 32 64 128

Figure 14. Average pairwise variance for each of the designs in Figures 1 and 13

N
DLl o

Table 5. Average variances of simple contrasts for the designs in Figures 1 and 13
1/) l 2—3 2—2

9-1 1 2 4 8 16 o
9(T, ) [0.3962 0.4509 0.5021 0.5417 0.5676 0.5826 0.5008 0.5951 0.5995
g(®,%) [0.3112 0.3815 0.4510 0.5083 0.5481 0.5722 0.5856 0.5927 0.6000
9(A, )

0.2942 0.3720 0.4480 0.5083 0.5487 0.5725 0.5856 0.5925 0.5995

119
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Thus it appears that optimality of Ap and Ag cannot, in general, ensure that A
is optimal.

Although Strategy 3 has some support in the literature, Examples 3 and 4 show
that neither Strategy 3 nor Strategy 4 can be recommended.

The final example shows Strategy 5 in action.

Example 10. Figure 15 shows two further designs for nine treatments in nine blocks
of two subblocks of size two, for comparison with the designs = and II in Figure 6.
Neither is generally balanced.

[2]903[5) [9]3[[1]7] [715]14[9] [1]8]4]5]
[4]7][5]2] [4]3][1]6] (4l7flz[6] [7]2]8]3]
A=[6]4]7]9] [4]2]1]8] T=[5]3[7[1] [8]2]1]6]
(619]8f2] [8]3]6]5] (5]6]]9[2] [9]1]6]3]

(5[1]7]8] (913]4]8]

Figure 15. Two further designs for nine treatments in nine blocks of two subblocks
of two plots

We know that Zp is optimal for nine blocks of size four. Design A was obtained by
starting with these nine blocks and randomly splitting each block into two subblocks
of size two. This was done 9000 times. Design A gives the optimal Ag among the
designs created in this way.

John and Mitchell (1977) quote a design from Mitchell and John (1976) as optimal
for eighteen subblocks of size two. These were randomly grouped into nine blocks of
size four, 9000 times. Design I' gives the optimal I'g which was found.

In fact Ag = T'g so Ag is indeed optimal for the given Ag. But I'g < Ap, so the
random permutations did not generate the best I" for the given I'g. This discrepancy
is not so surprising: there are only 19,683 ways of splitting up the blocks of Zp but
there are 34,459,425 ways of grouping the subblocks of I'g.

Although A is optimal for both 1 = 1 and ¥ = oo, once again it is not optimal for
all intermediate values of 1. Table 6 shows the relative variances of the four designs.
In order to show the relative loss more clearly, the variances for each value of 1 have
been divided by the minimum of the four variances. Thus

9(A, %)
min {Q(Aa "/))a g(Fy w)’g(n’ ":/)), Q(Ey 1/))}
Design A is never more than 2% worse than the best of these four designs, but design IT

is actually best for the most important values of ¢, and performs well for all ¢ > 1.
O

g (A ) =
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Table 6. Relative variances for the four designs in Figures 6 and 15

P |2—2 2-1 1 2 4 8 16 oo
g (I, ¥) |1 1.09 1.001 1 1 1 1.01 1.02
g*(E, %) |1 1.07 1 1.0002 1.0006 1.02 1.04 1.07
a* (A, 9) 1004 1 1 1.02 1.01 1.0002 1 1
g*(T,¥) |1 1 1.003 1.02 1.02 1.0002 1.001 1

It seems that, in general, the only clear recommendation that can be given is that
9(A, 1) should be tabulated and compared for a range of designs A for ¥ in ¥. How
should the candidate designs be chosen? Certainly, designs A for which either Ag
or Ap is optimal should be included. From the examples and results in this paper,
it would be wise to include nested regular graph designs, partially balanced nested
block designs, designs such that at least one of Ag and Ap has Califiski’s property,
and designs, like the one in Figure 12, which minimize the sum of the squares of the
differences of c(¢¥ — 1)Ag + Ap from their mean, for ¢ in ¥. It may also be a good
idea to try to improve some of these designs by using one of the two types of random
permutations described in Section 9.

This ad hoc approach has the advantage that it can be tailored to the experi-
menter’s requirements. For example, the average variance of simple contrasts could
be replaced by the analogue of the D-criterion or the E-criterion. As Pearce (1983,
Chapter 9) has noted, it is rare for all contrasts to have equal importance. In a facto-
rial experiment different weights could be given to main effects and to interactions; in
an experiment to compare new treatments with controls the average can be restricted

to those pairs (6,n) for which 8 is a control and 7 is a new treatment: see Leeming
(1997, 1998).
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Wybér ukladu dla blokéw zagniezdzonych

STRESZCZENIE

Uklad o zagniezdzonych blokach to uklad o jednostkach doéwiadczalnych pogrupowa-
nych w bloki, w ramach ktérych wyrézniono podbloki. Podany jest przeglad estymato-
réw 1 ich wariancji w sytuacji gdy nastepuje laczenie informacji z warstwy poletkowej
i warstwy podblokéw. Wzgledna wielko$é wariancji zwigzanych z tymi dwiema war-
stwami jest zwykle nieznana, jednak rzad tej wielkosci jest czgsto okreslony poprzez
poprzednie eksperymenty.

Zaproponowana metoda poréwnywania ukladéw jest zilustrowana wieloma przy-
kladami. Pokazano, ze uklad moze by¢ optymalny dla analizy wewngtrzblokowej
gdy podbloki s3 ignorowane oraz optymalny dla analizy wewnatrzpodblokowej gdy
ignorowane sg bloki, nie bedac optymalny dla kombinowania informacji. Podane sg
twierdzenia pokazujace iz pewne uklady sg optymalne w pewnych klasach ukladéw
gdy nastepuje laczenie informacji i gdy wariancja zwigzana z warstwg podblokéw jest
co najmniej tak duza jak wariancja warstwy poletkowej. Podane s heurystyczne
strategie znajdywania dobrych ukladéw do$wiadczalnych w innych sytuacjach.

SLOWA KLUCZOWE: kombinowanie informacji, zagniezdzone zréwnowazone uklady
blokowe, bloki zagniezdzone, zagniezdzone uklady grafu regularnego, uklady opty-
malne.



